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The interaction between a zero-pressure-gradient turbulent boundary layer and a pair 
of strong, common-flow-down, streamwise vortices with a sizeable velocity deficit 
is studied by large-eddy simulation. The subgrid-scale stresses are modelled by a 
localized dynamic eddy-viscosity model. The results agree well with experimental 
data. The vortices drastically distort the boundary layer, and produce large spanwise 
variations of the skin friction. The Reynolds stresses are highly three-dimensional. 
High levels of kinetic energy are found both in the upwash region and in the vortex 
core. The two secondary shear stresses are significant in the vortex region, with 
magnitudes comparable to the primary one. Turbulent transport from the immediate 
upwash region is partly responsible for the high levels of turbulent kinetic energy in 
the vortex core; its effect on the primary stress (u’z’) is less significant. The mean 
velocity gradients play an important role in the generation of (u’u’) in all regions, 
while they are negligible in the generation of turbulent kinetic energy in the vortex 
core. The pressure-strain correlations are generally of opposite sign to the production 
terms except in the vortex core, where they have the same sign as the production 
term in the budget of (u’v’). The results highlight the limitations of the eddy-viscosity 
assumption (in a Reynolds-averaged context) for flows of this type, as well as the 
excessive diffusion predicted by typical turbulence models. 

1. Introduction 
Turbulent boundary layers with embedded streamwise vortices are an important 

type of three-dimensional wall-bounded flows, and are of great interest in engineering 
applications. Streamwise vortices are generated when any protuberance extends from 
a wall, or when fluid flows over a wall with streamwise curvature or through a non- 
circular channel. The streamwise vortices enhance heat and momentum transfer close 
to the wall, and are often introduced artificially by means of vortex generators to 
improve mixing and delay separation. However, under some circumstances, streamwise 
vortices can be undesirable; such is the case in gas turbines, where streamwise vortices 
increase the interaction between the hot gas stream and the cooled blades, severely 
damaging the blades. Since relatively weak vortices can have large effects on the 
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surrounding flow, neglecting or mispredicting those effects could result in large errors 
in the engineering design. Many experiments have been conducted to improve 
our understanding and provide well-documented data for modelling and numerical 
simulation validation, notably at Imperial College and Stanford. Single vortices 
and vortex pairs, embedded in two- and three-dimensional boundary layers, were 
considered. 

Mean-flow and turbulence quantities for an isolated vortex embedded in a low- 
speed turbulent boundary layer in zero pressure gradient were measured by Shabaka, 
Mehta & Bradshaw (1985). The magnitude of the secondary flow was approximately 
5% of the free-stream velocity. They observed that the vortex circulation was almost 
conserved, and vorticity of opposite sign to the primary vorticity was found around 
the vortex. Negative Reynolds shear stress -(u’v’) (where (.) represents averaging 
over time and a prime denotes a fluctuating quantity) was observed in the vortex 
core region. Spanwise profiles of the skin-friction coefficient showed both a rise and 
drop of 30% from the undisturbed flat-plate value. The effects of streamwise pressure 
gradient and heat transfer on the vortex development were studied by Westphal, 
Eaton & Pauley (1985) and Eibeck & Eaton (1985). 

Mehta & Bradshaw (1988) and Pauley & Eaton (1988a,b) studied two counter- 
rotating vortices, denoted as a ‘common-flow-up’ vortex pair, in which the flow 
between the vortices is directed away from the wall. The vortices lifted from the 
wall, and reached a height of roughly twice the boundary-layer thickness, at which 
point they were connected by a tongue of upward-moving fluid, with a corresponding 
lateral convergence of boundary-layer fluid towards the plane of symmetry. This flow 
field was more complex than in the case of a single vortex. The contours of eddy 
viscosities and diffusivities were very ill-behaved, as were the contours of the bulk 
transport velocities of the Reynolds stresses. 

The ‘common-flow-down’ vortex pair has been studied extensively by Pauley & 
Eaton (1988a,b) and Cutler & Bradshaw (1989). The vortices are held inside the 
boundary layer by their mutual interaction, and move apart downstream due to the 
image vortices. This type of vortex pair causes the greatest distortion of the boundary 
layer over the greatest streamwise distance; the boundary layer is thinned between the 
vortices and thickened in the regions where the secondary flow is directed away from 
wall. The vortex circulation decays much more slowly than the peak vorticity, but 
both of them decay faster than in the single-vortex case. The perturbation to the skin 
friction is much larger in the common-flow-down than in the common-flow-up case, 
and the Reynolds stresses present highly three-dimensional characteristics. Pauley & 
Eaton (1988a, b) observed that the heat transfer modification was strongly dependent 
on the vortex interaction and turbulent intensity near the wall. 

Shizawa & Eaton (1992) studied the interaction between a single vortex and the 
pressure-driven three-dimensional boundary layer produced by a symmetrical 60” 
wedge placed downstream of a two-dimensional boundary layer. They observed that 
the turbulence development was very sensitive to the sign of the vortex. They also 
found that the peak vorticity and secondary velocities decay more rapidly than in a 
similar two-dimensional boundary layer. 

Other experimental studies include Takagi & Sato (1983), Matsumoto (1986), Kim 
and Pate1 (1994), Wendt, Greber & Hingst (1992), and Fontaine, Bieniewski & 
Deutsch (1993). It was found that vortices with small vortex spacing remain in close 
proximity to the wall, and the resultant interaction with the boundary layer is strong; 
in addition, counter-rotating cores merge together as they develop downstream. The 
wall curvature has a strong effect on the interaction between the vortices and the 
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wall: the vortex circulation increases on a concave wall compared to a flat one. When 
a counter-rotating vortex pair is placed within the wall-layer region, a significant 
reduction in the primary Reynolds stress and turbulence production is observed. 

Because of its simple geometry and three-dimensionality, the interaction between 
an otherwise two-dimensional turbulent boundary layer and embedded streamwise 
vortices has been also studied using the Reynolds-averaged Navier-Stokes equations. 
Reynolds-stress models originally developed for two-dimensional turbulent flows 
generally do not give accurate results when extended to three-dimensional turbulent 
flows. It appears that even the most refined Reynolds-stress models do not adequately 
predict the cross-stream turbulent intensities and the secondary shear stresses that are 
important for the streamwise vorticity transport. 

Liandrat, Aupoix & Cousteix (1987) performed numerical studies with a variety 
of Reynolds-stress models. They found that simple models based on the Boussinesq 
(eddy-viscosity) hypothesis provide satisfactory estimates of the mean features of the 
flow in the case of a single vortex, but fail for a vortex pair. Second-moment closure 
models improved the prediction of the anisotropy of the normal Reynolds stresses 
(d2  - d2) ,  and the development of the secondary flow and streamwise vorticity was 
computed more accurately than with eddy-viscosity models. Although the prediction 
of the secondary shear stresses was improved, they were still underestimated. Sankaran 
& Russell (1990) and Kim & Patel (1994) carried out numerical studies of common- 
flow-down vortex pairs using K - models. In general, the flow in regions away 
from the vortex core was predicted well, but the details of the flow in the vortex core 
were captured poorly. The peak streamwise vorticity decayed excessively fast in the 
streamwise direction. 

Large-eddy simulation (LES) is an intermediate method between direct numerical 
simulation (DNS) and the solution of the Reynolds-averaged Navier-Stokes equations 
(RANS). In DNS all the turbulent scales are resolved, but its cost limits this technique 
to low-Reynolds-number turbulent flows. In LES, the computational grid is sufficiently 
fine to resolve the dynamically important motions, but not the small-scale motions, 
which are modelled. Therefore, the computational resources required are significantly 
less than for DNS, and LES can compute flows at higher Reynolds numbers. Since 
the small-scale motions tend to be more universal, the modelling in LES can be 
significantly simplified, compared with RANS, and the results can be more accurate 
than those obtained by current Reynolds-stress models, especially in flows such as 
this one where non-gradient effects are significant. To improve the understanding of 
the mechanisms controlling the Reynolds stresses and the current RANS modelling 
techniques, an analysis of the Reynolds-stress transport equations is needed, and, 
although the detailed measurements of the mean-flow and turbulence quantities 
made in experiments have improved the understanding of the three-dimensional 
characteristics of these types of flows, the data provided by those experiments are still 
not sufficient for a complete transport-equation analysis. LES is expected to predict 
with sufficient accuracy turbulence statistics of physical and engineering interest, and 
to serve as a tool to improve Reynolds-stress models. 

Esmaili (1992) and Esmaili & Piomelli (1992) performed LES of a common- 
flow-down vortex pair embedded in a temporally developing zero-pressure gradient 
turbulent boundary layer and in a sink-flow boundary layer. Although their results 
were averaged over a sample of insufficient size, the main features of the Reynolds 
stresses were captured. 

In the present paper common-flow-down vortices are studied, again using LES, but 
this time in a spatially developing boundary layer. Such a simulation is more realistic, 
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and can provide better statistically averaged results than the temporally developing 
simulations performed so far. Sections 2 and 3 will describe the numerical methods 
used in the simulation, and the geometric configuration, 334 and 5 will present the 
mean flow and Reynolds stresses, and $6 will discuss the second-moment budgets. 
Conclusions will be drawn in $7. 

2. Numerical method 
In large-eddy simulations the flow variables are decomposed into a large-scale (or 

resolved) component, denoted by an overbar, and a subgrid-scale component. The 
large-scale component is defined by the filtering operation : 

7(x) = f (x ’ )G(x ,  x’)dx’, 
J D  

where D is the entire computational domain, and G is the filter function. 

vields 
Applying the filtering operation to the incompressible Navier-Stokes equations 

aai 
axj 
- = 0, 

where reference-length (the inflow displacement thickness, 6’) and velocity (the free- 
stream velocity, Urn) scales are used to make U j ,  p, xi and t dimensionless. The 
subgrid-scale stresses, r j j  = Wj - U j U j ,  need to be modelled to represent the effect of 
the subgrid scales on the resolved field. 

Since the small scales tend to be more universal than the large scales, their effects 
can be modelled by fairly simple eddy-viscosity models of the form 

- -2 - - 
(2.4) T.. - lJ kk = - 2 V ~ S i j  = -2CA (slsjj = -2cpjj 1J 

_ _  
where d i j  is Kronecker’s delta, and Is1 = (2SijSij)1/2 is the magnitude of the large- 
scale strain-rate tensor sij = (dt i i /dxj  + dZij/dxi) /2 .  In the present work the model 
coefficient C is calculated by a localized version (Liu 1994) of the dynamic eddy- 
viscosity model (Germano et al. 1991). In the dynamic eddy-viscosity model, a second 
filter, the test filter 2, is introduced, and the coefficient C is computed using an 
identity relating the resolved turbulent stresses Lfjj = Sj - cjGj,  the subgrid-stresses 
zij and the subtest-scale stresses Tij = sj - Gizj (Germano 1992): 

(2.5) 2.. - T..-%..  
1J - 1J 11’ 

If the subtest-scale stresses are parameterized by a model of the form (2.4): 
c 2  5 2  

Tij - 6 i j T k k / 3  = -2CA (S(Si j  = -2Caij, (2.6) 
Equations (2.4) and (2.6) can be substituted into (2.5) to yield - 

Lfipij - 6jjLf&/3 = -2caij + 2cpij. 

The calculation of C from (2.7) may result in a mathematical inconsistency if 
C is extracted from the filtering operation (Cabot & Moin 1993); to avoid the 
inconsistency, Ghosal et aE. (1995) used a variational formulation, in which an integral 
equation was solved iteratively, at a significant additional expense. In the present 
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simulation, instead, an approximate localization is used in which the identity (2.5) is 
rewritten as 

21, + T; - ~ i j  = Ti, - rij. (2.8) 

(2.9) 

Substituting (2.4) and (2.6) into the right-hand side of (2.8) gives 

21J + CJ - z L J  - b l J ( Z k k  + - Zkk)/3 = -2c  ( P l J  - all) . 

At each timestep, the model coefficient can then be evaluated from (2.9), which is a 
set of algebraic equations for C ,  using the least-squares approach (Lilly 1992), in a 
consistent manner: 

(2.10) 

where M,, = a,, - P,,. 
The terms in (2.10) are obtained from the velocity fields at the timestep n, except 

for the eddy viscosity, which must be evaluated at the previous timestep; the subgrid- 
scale stress in the numerator is rIJ = -2vF-lS;: It is only approximate in the sense 
that it assumes C to be a slowly varying functlon of time; this, however, is a more 
realistic assumption than the one that requires it to be a slowly varying function 
of space. A priori tests by Lund, Ghosal & Moin (1993), for instance, indicate that 
in homogeneous turbulence the coefficient is highly correlated in time. To avoid 
the numerical instabilities that may arise from such temporal correlation, the eddy 
viscosity is required to be smooth on the test-cell level (i.e. is filtered over the test 
cell), and the total viscosity is required to be non-negative. This model was tested for 
the LES of a two-dimensional turbulent boundary layer flow, and the results were in 
good agreement with DNS and experimental data (Liu 1994). 

To avoid the difficulties associated with the implementation of inflow/outflow 
boundary conditions, the fringe method (Spalart & Watmuff 1993) is employed. This 
method divides the flow domain into three regions: two fringe regions and a useful 
region (figure la). In the fringe regions, extra terms are introduced into the governing 
equations to remove mass from the boundary layer, reducing the boundary-layer 
thickness as the flow enters or re-enters the useful region, so that periodic boundary 
conditions can be implemented in the streamwise direction. In the useful region, the 
governing equations are the Navier-Stokes equations; only the results in this area are 
of interest. The streamwise vortices are introduced by a body force (which acts as 
a numerical vortex generator) placed before the useful region of the boundary layer. 
The momentum equations, with fringe terms and body force included, are of the form 

where ~ 2 , ~  is the fringe velocity and Fi the body force. 
The fringe velocity, ~ 2 , ~ ,  is given by (Spalart & Watmuff 1993) 

where S is the strength of the fringe terms, L, is the computational domain size 
in the streamwise direction, and x1 determines the width of the fringe region. The 
parameter yl and the strength S control the boundary-layer thickness at the inflow 
of the useful region. 

Many experiments show that the velocity distribution of the embedded vortices is 
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regions (4 

Body force Inflow station 
profile 

FIGURE 1. Flow configuration and the computational domain. (a) (x, y)-plane; 
( b )  (Y, z)-plane. 

very similar to that of Oseen vortices (plus their images to account for the effect of 
the solid wall). If the velocity profile in the region of non-zero body force Fi (as 
shown in figure 1) is ug - ( v 2 d ) g f ( x ) ,  where ( U 2 d ) g  is the cross-plane velocity of the 
vortex and f(x) is the streamwise variation of the vortex strength, the steady-state 
&momentum equation in this region can be approximated as 

(2.13) 

Introducing the Oseen vortex velocity profile (V& = [l - exp ( - r2 /02 ) ]  r/27~Y 
(where r is the circulation, r is the distance from the axis of the vortex, and o 
is the core size) into the above equation yields a body force of the form 

(2.14) 

where S, is the strength, and g(x) controls the streamwise variation of the body force; 
it was chosen to be of the form g(x) = e-(x-x~)2/x: (that is, f ( x )  is an error function). 
The parameters x, and x2 denote the streamwise location and spatial extent of the 
body force. In addition, to account for the effect of the solid wall, the images of the 
distribution (2.14) are also added in the present simulations, and the body force is 
modified in the region close to the wall to satisfy the no-slip boundary condition. 

Since a momentum deficit is introduced by actual vortex generators (e.g. delta 
wings) in the experiments, this effect is included. A Gaussian distribution is again 
used in the streamwise direction; the streamwise component F1 of the body force, 
therefore, is 

F1 = S, e- In 2 ( r i d 2  g(x), (2.15) 

where S, determines the strength of the wake. The constant In2 is used to let the 
magnitude of F1 at the core edge be half the maximum magnitude. A simulation was 
also performed in which the wake profile was not introduced (Liu 1994). A slight 
axial acceleration was observed near the vortex centre, due to the low pressure in the 
core, that is not realistic. 

The governing equations (2.2) and (2.3) are integrated in time using a Fourier- 
Chebychev pseudospectral collocation scheme (Zang & Hussaini 1988). The skew- 
symmetric form of the momentum equation (2.2) is employed, and the time-advance- 
ment is performed by a fractional-timestep method with a semi-implicit scheme; 
the wall-normal diffusion term is advanced using the Crank-Nicolson scheme, and 
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the remaining terms by a low-storage third-order Runge-Kutta scheme. Periodic 
boundary conditions are applied in the streamwise ( x )  and spanwise ( 2 )  directions, 
and no-slip conditions at the solid wall; asymptotic boundary conditions are applied 
at the upper boundary. No dealiasing is performed. 

3. Geometric configuration 
Since the common-flow-down vortices decay slowly in the streamwise direction, 

the computational domain must be fairly long to include a significant development 
of these vortices; since they move apart in the spanwise direction, a large spanwise 
width is also required. The domain size used here is 6006* x 406* x 1006* in the 
streamwise, wall-normal and spanwise directions respectively. Unless otherwise stated, 
6' is the displacement thickness at the inflow location in the undisturbed boundary 
layer, located at O.2Lx (L,  is the streamwise length of the domain). In the undisturbed 
boundary layer, Rep = 830 at the inlet, and Reb. = 1660 at  the ouflow. The number 
of grid points in the three directions is 192 x 73 x 128. The grid size is Ax = 3.16' 
and dz = 0.786* in the streamwise and spanwise directions, or, in wall units at the 
inflow, A x +  = 125 and Az+ = 31; the distance of the first point from the wall is 
approximately y+ = 0.2. The necessity of a fairly large computational box and the 
grid resolution required by the LES limit the Reynolds number of this calculation. 
The maximum grid spacing allowable in the spanwise direction when the wall layer 
is resolved is dz+ _N 45. In the present calculation, because of the convection effects 
of the embedded vortices, the wall shear is increased immediately below and inboard 
of the vortices; this resuts in a higher value of the local friction velocity. The 
resolution was chosen in such a way that the maximum grid spacing, in wall units, 
is AzLax = 40 below the vortex. Increasing the Reynolds number to match the 
experiment would have required a significantly finer grid, and the calculation would 
have been prohibitively expensive. 

Most of the data reported were obtained at the four cross-planes located at 
x /Lx  ~ 0 . 2 ,  0.4, 0.6, and 0.8, shown in figure l ( a ) .  They correspond to x/6* = 122, 
244, 366, and 488. At the inflow location, x /6*  = 122, the coordinates of the vortex 
centres, shown in figure l(b), are z1/6*  = -zZ/6* = 11, y 1 / 6 *  = y 2 / 6 "  = 5, and the size 
of each vortex core is u/6* =2.1. 

The strength of the body force is S, = O.O26U$/b*, obtained by matching the 
vorticity at the inflow station to the experimental data of Pauley & Eaton (1988a, 6). 
The inflow vorticity is fix = 0.32[/,/6*, the maximum magnitude of the secondary 
flow is Ve = 0.28Um, and the inflow vortex Reynolds number is T/v = 5000. The 
strength of the wake component of the body force, F1, is S, = O.O28U&/6*. To 
eliminate the returning vortices, introduced by the streamwise periodic boundary 
conditions, a body force with the same configuration as (2.14), and opposite sign, is 
placed some distance downstream of the outflow boundary. 

4. Mean-flow development 
The solution fields were averaged over a time interval of 6006*/U,, and also using 

symmetry about the plane z = 0 (however, many figures show both sides for clarity). 
In the following, (.) will represent statistics obtained using the entire sample. A prime 
will denote the large-scale fluctuation (e.g. u' = U - (U))  and a capital letter a time- 
averaged quantity (e.g. U = (a)). To evaluate the adequacy of the sample size, two sets 
of statistics averaged over samples of different sizes were compared. If ( . ) h  represents 
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FIGURE 2. Secondary velocity vectors a t  the four streamwise stations. 

statistics averaged over 3006*/U,, the difference between the full and the reduced sets 
are (IU - U h / / / U m  < 0.01% and i/(u’u’) - ( u ’ u ’ ) ~ ~ / / ~ ( u ‘ u ’ ) ~ ~ ~ ~  < 0.5% when averaged 
over a cross-plane; worst-case local differences for U and (u’u’) are less than 0.6% 
and 4%, respectively. As mentioned before, the vortex strength is adjusted to match 
the experimental data of Pauley & Eaton (1988~) at their X = 66 cm station; the LES 
results at the second station will be compared with the corresponding location in the 
experiment, namely the X = 97 cm station. The major difference is that the Reynolds 
number in the calculation is only one third of that in the experiment. 

Figure 2 shows the secondary velocity vector fields at the four streamwise stations. 
The vortices move apart due to the image vortices, and turbulent diffusion makes 
them grow in size and decay in vorticity. Nevertheless, the peak streamwise vorticity 
decreases from about 0.3 to about 0.05, compared with the undisturbed spanwise 
vorticity which is about 0.05. This led us to describe the vortices as strong. 

As mentioned in $2, the goal of the body force is to generate Oseen vortices. The 
vortex velocity profiles at the inflow station are compared with those of a common- 
flow-down Oseen vortex pair in Figure 3(a,b);  the profiles generated by the body 
force are quite close to those of the Oseen vortex. Perfect agreement is not expected 
because U,  in (2.13) is only an approximation. 

The V and W velocity compare quite well with the experimental data of Pauley 
& Eaton (1988a, b) in figure 3(c, d). However, close to the wall the spanwise velocity 
is smaller in the calculation. The decay between the first two locations (figures 3a 
and 3c) appears excessively rapid. This could result from the Reynolds-number 
difference, or from the differences that remain between a true vortex generator and 
its representation by a body force. The positive peak of W is accurate, therefore the 
difference seems to be confined to the wall region. Note also that in the experiment 
the streamwise velocity (shown below) is monotonic up to y / 6 *  = 1.5 (y+ = 160), but 
the spanwise velocity peaks below y/6* = 0.5 (y+ fi! 50). Such a difference in limiting 
behaviour implies surprisingly large turning angles in the buffer layer. 

Streamwise-velocity contours shown in figure 4 reveal the considerable distortion of 
the boundary layer by the vortices, as well as the velocity deficit. Figure 5 compares 
the streamwise velocity at the second station with experimental data at X = 97cm. 
The agreement is very good, including the velocity deficit, in spite of the Reynolds- 
number difference. The large distortion of the flow is again vivid. Relative to the 
undisturbed flow, the spanwise average of the manipulated flow has lower integral 
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FIGURE 3. Vortex velocity profiles at the first and second locations. (a) Wall-normal velocity along 
the vertical lines at z/6' = 10 and z/6" = 16 (the edges of the vortex core) a t  the first location: 

, body force; 0 ,  Oseen vortex. (6) Spanwise velocity along the vertical line passing through the 
vortex centre ( z / 6 *  = 13) at the first location, lines and symbols as in (a). (c) Wall-normal velocity 
at the second location, lines: LES, symbols: experiment. ---, A, Downwash region (z/6' = 10); 
-, f ,  vortex centre ( z / 6 *  = 16); - - . - - . -  ,o, upwash region (z/S* = 22). ( d )  Spanwise velocity 
at the second location, lines and symbols as in (c). 

thicknesses and a lower shape factor H = d*/Q.  These lower values only persist 
until the vortices collide with their common-flow-up neighbours, and this probably 
motivates the current preference for co-rotating vortices in applications. 

The streamwise velocity profiles expressed in local wall units at several spanwise 
locations are shown in figure 6. The immediate downwash location (z/d* = 13) has 
the highest, and the immediate upwash location ( z / 6 *  = 19) has the lowest wall shear 
stress. The vortex-centre profile and the profile in the immediate downwash region 
deviate the most from the undisturbed profile, and present some characteristics of 
laminar profiles: in particular, they are higher than the standard logarithmic layer. 
The deviations are larger than those found by Pauley & Eaton (1988a, b), probably 
due to the difference in Reynolds numbers. The undisturbed Reynolds number in 
the simulation is close to the critical Reynolds number for the existence of a normal 
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FIGURE 5. Streamwise velocity profiles at the second streamwise station compared with the 
experimental data of Pauley & Eaton (1988~2, h)  at  X = 97 cm. ___ , LES; - - - , undisturbed 
boundary layer; 0, experiment; (a )  between vortices ( z / 6 *  = 0), ( h )  downwash region ( z / 6 '  = lo), 
(c) vortex centre ( z /6 '  = 16), (d)  upwash region ( z / S *  = 22). 

30 

20 

U +  

10 

0 
1 10 100 1000 

Y +  
FIGURE 6. Streamwise velocity profiles in local wall units at the second streamwise station. 0 , 
Undisturbed boundary layer; ---, immediate downwash region (z/6* = 13); ___ , vortex center 
( z / 6 *  = 16); , immediate upwash region ( z / 6 *  = 19). 
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FIGURE 7. Contours of streamwise vorticity at the four streamwise stations. Grey: negative 
contours, black: positive contours. 
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FIGURE 8. Contours of streamwise vorticity at the second streamwise station. 

subgrid-scale stresses are an order of magnitude smaller than the large-scale stresses in 
the present simulation (at least away from the walls), the large-scale quantities shown 
in the following represent the contributions from most of the significant turbulent 
motions. 

Figure 10 shows the large-scale turbulent kinetic energy q2 = (.:ti:) at the sec- 
ond station. Simulation and experiment agree rather well, suggesting a satisfactory 
recovery from the large difference between the two vortex generators (the shift in 
spanwise position could be due to the induced velocity of the vortex bound to the 
vortex generator, which is absent in the simulation). However, the simulation results 
are consistently higher, even in the undisturbed region. 

Similar to the streamwise vorticity, the turbulent kinetic energy is confined to a thin 
layer in the downwash region, and lifted up in the upwash region. The magnitude of 
q2 in this 'tongue' is approximately 50% higher than in the experimental data, partly 
due to the difference of the Reynolds numbers (higher skin-friction coefficient at 
lower Reynolds number). The factor of 3 in the Reynolds number can explain about 
half of the 50% difference. High levels of turbulent kinetic energy are also found 
in the vortex core, with magnitude around 40% higher than that in the experiment. 
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FIGURE 9. (a)  Streamwise vorticity at vortex centres, (b)  circulation of the half-cross-planes ( z  > 0). 
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The mechanism responsible for these high levels of turbulent kinetic energy will be 
discussed in the next section. 

The profiles of the large-scale turbulence intensities, uLrns, u:ms and wirns, normalized 
in local wall units, are shown in figure 11. Near the wall, the downwash region shows 
a distinct suppression of the turbulence, but it is far from complete relaminarization. 
The streamwise intensity is less affected than the other components, much like in 
a two-dimensional turbulent boundary layer with wall suction (Antonia, Spalart & 
Mariani 1994). Closer to the vortex the profiles have peaks in the outer layer as 
expected from figure 10; the peak u:ms is relatively lower than the others. This 
suggests that production through aU/dy  associated with the axial deficit is modest 
(recall that that production directly ‘feeds’ u:,,, which feeds the other components 
through the pressure term). The ‘lifted’ kinetic energy is also seen. 

The combinations of Reynolds stresses ( w f 2 )  - ( d 2 )  and (dw‘) control the vortex 
decay. Figure 12 shows the former quantity at the second station, compared with 
the experimental data. The patterns are very similar, and consistent both with the 
four-way symmetry of an axisymmetric vortex and with lifting of turbulence from 
the wall. However, the simulation results are again higher. Similar remarks apply to 
the latter quantity (not shown). Grid-refinement studies indicate that the magnitude 
difference between the simulation and the experiment is not caused by the grid 
resolution. Besides the Reynolds-number effect, the uncertainty in the experimental 
measurement can be significant. Bradshaw (1987) mentioned that the cross-plane 
shear stress (u’w’) is particularly difficult to measure: its uncertainty is the largest 
one in measurements of the second moments; the estimated uncertainty for (dw’} 
in X-wire measurements was 15% of (u’v’), with an additional error of 9% of (u’u’} 
when the probe was not aligned with the mean flow (Anderson & Eaton 1987; Pauley 
& Eaton 1988a). Since the region of significant (u’w’) is concentrated in small areas 
in this case, the uncertainty of the maximum (u’w’) can be even larger. 

Figure 13 shows the primary large-scale Reynolds shear stress -(u’u’) at the second 
streamwise station, compared with the experimental data. In the upwash region, 
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FIGURE 10. Contours of turbulent kinetic energy, q 2 / U k :  (a) second streamwise station, 
( b )  experimental data of Pauley & Eaton (1988~) at X = 97 cm. The reference 6‘ in the ex- 
periment was 0.25 cm. 

the embedded vortices convect high levels of -(u’u’) from the wall layer into the 
outer layer, producing a region of positive -(u’v’) rolling around and above the 
vortex core. The peak above the vortex core in the simulation is again 50% higher 
than in the experiment. The maximum value also occurs in the immediate upwash 
region close to the wall, similar to that of the turbulent kinetic energy. In the vortex 
core the distribution presents a more complicated pattern, with a region of negative 
-(do’), and a small region with high levels of positive -(u’u’) on the downwash 
side of the vortex centre. High levels of negative -(u’u’) are concentrated in a small 
area on the upwash side of the centre. In a simulation that did not include the 
wake-deficit profile (Liu 1994), only a negative region roughly centred on the vortex 
centre was observed in the vortex core, which indicates that the velocity deficit has 
an important effect on the distribution of -(u’u’). While the peak value on the 
downwash side of the vortex centre matches very well the experimental data, on 
the upwash side the peak is 20% larger. The agreement is better than for other 
moments. It will be shown later that the transport from the immediate upwash 
region has less effect on the shear stress -(u’v’) in the vortex core than on turbulent 
kinetic energy, and that -(u’v’) in the vortex core is mainly due to the velocity deficit. 
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The secondary Reynolds shear stress -(u’w’) (figure 14) is larger than -(u’v’) in 
magnitude in some regions in the flow. Significant negative values of -(u’w’) are 
found in the shape of a tongue similar to the turbulent kinetic energy shown in 
figure 10; large values also occur close to the wall. Its maximum value is over twice 
the peak -(u’u’), and occurs at the same location as -(u’v’) and q2.  The DNS of 
Sendstad & Moin (1992) showed that, when a two-dimensional boundary-layer flow 
experiences an extra gradient i3 W/i3y, the magnitude of (u’w’) increases dramatically; 
the DNS of a three-dimensional turbulent boundary layer in which the free-stream 
vector changes direction at a constant angular velocity also shows a very large 
magnitude of (u’w’), which was found to be Reynolds-number dependent (Spalart 
1989). In both of these flows, the associated strain rate dli/i3z + dW/dx was zero, so 
that there was no energy exchange with the mean flow. Here, the lifting of low-speed 
fluid creates a local d U / d z  gradient, but direct lifting of the turbulence seems more 
significant than production (production by d U / d z  would produce two opposite layers 
in (u’w’)). Quadrant analysis (Liu 1994) indicates that events with u’ > 0 and w’ > 0 
are responsible for the region of negative -(u’w’) in the immediate upwash region 
close to the wall. Near the vortex core, (u’w’) has the same two-way symmetry as 
(u’d),  as opposed to the four-way symmetry of (u’w’). This pattern was not found in 
the simulation without wake deficit (Liu 1994). 

The next section will assist in the improvement of Reynolds-stress turbulence 
models. For the rest of this section, we turn our attention to Reynolds-averaged 
(as opposed to subgrid-scale) eddy viscosities, in order to suggest directions for 
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FIGURE 12. Contours of the anisotropy of the normal Reynolds stresses, - ((d2) - (w”)) /U:: 
(a) second streamwise station, ( b )  experimental data of Pauley & Eaton (1988a) at X = 97 cm. The 
reference 6” in the experiment was 0.25 cm. 

improvements of the simple engineering turbulence models. One direction may be a 
‘non-scalar’ eddy viscosity; another, more immediate one, is to bring the magnitude 
of the modelled eddy viscosity into a plausible range. Both issues are investigated 
using dot products between the strain and stress tensors, rather than with individual 
ratios such as -(u’u’)/(8U/8y), to obtain some measure of frame independence. 

The anticipated weakness of the (scalar) eddy-viscosity assumption is explored in 
Figure 15 using the correlation coefficient between the two tensors, 

the diagonal component of the stress tensor was removed, since it has no influence 
on the prediction of an incompressible flow. If it were not removed, the numerator of 
(5.1) would be unchanged, but the denominator would be larger, so that k would be 
lower. Deviations of k from the ideal value of 1 reveal how far the flow deviates from 
the behaviour a scalar eddy viscosity would impose. Figure 15(a) shows few regions 
above 0.8, and many below 0.2 (but note that the lower bound on 2 is -1). The 
contours are not very smooth, but nevertheless more readable than with individual 
ratios. In the undisturbed part of the boundary layer, the correlation does not exceed 



Vortex-boundary layer interaction 167 

Y 
h'* 
- 

10 

0 10 20 30 40 

t l S *  

6 

4 

Y (cm) 

2 

0 4 8 12 

z (cm) 

FIGURE 13. Contours of the primary Reynolds stress -(u'v')/U:: (a)  second streamwise station, 
( b )  experimental data of Pauley & Eaton (1988a), X = 97 cm. The reference 6' in the experiment 
was 0.25 cm. 

about 0.7, and is low near the wall. This is, of course, because (d2 )  > (d2) and other 
inequalities (which have no detrimental effect on the flow field in the two-dimensional 
boundary layer). Values around 0.7 appear quite tolerable; the troublesome regions 
are the downwash region, and the vortex core. 

In order to determine the specific effect of the eddy-viscosity anisotropy on the 
vortex decay, R was recalculated in the ( y ,  2)-plane only (that is, i and j were restricted 
to (2,3) in (5.1)). Away from the vortex, that correlation is very small and has little 
meaning. Rather high values are found around the vortex, and very low values 
in the core, where both tensors take small values because of symmetry (and the 
eddy-viscosity assumption would yield very low Reynolds stresses). This suggests that 
a free vortex does not in fact catastrophically invalidate the (scalar) eddy-viscosity 
assumption in itself. 

The magnitude of the eddy viscosity is another matter entirely, explored in figure 16. 
Again a dot product is used to produce an eddy viscosity: 

(the diagonal component of (uiui) has no effect in this case). The mathematical 
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FIGURE 14. Contours of the secondary Reynolds stress -(u'w')/U;; (a)  second streamwise station, 
( b )  experimental data of Pauley & Eaton (1988~)  at X = 97 cm. The reference 6' in the experiment 
was 0.25 cm. 

motivation for this 'least-squares' definition is clear; the following physical interpre- 
tation can also be put forward: v, is the eddy viscosity that would give the correct 
production rate, transferring the correct amount of kinetic energy from the mean flow 
to the turbulence. The figure compares this quantity and an eddy viscosity calculated 
from the K - E formula, v, = C p K 2 / c ,  with C, = 0.09. The LES results for K and E 

are used instead of an ab initio K - E solution based on the consideration that in an 
accurate K -6 solution both K and E would be close to the LES values. The values of 
v, predicted by the K - E  formulation are close to those obtained via (5.2) away from 
the vortex, giving our approach much credibility; inside the vortex, however, they are 
roughly double the LES values. This explains the rapid decay of vorticity in K - E 

solutions (see figure 9), and gives model developers a target range for the desired 
values in this flow. The quasi-laminar region in the downwash is also evident. We 
believe the eddy-viscosity magnitude (figure 16) is a more pressing problem than the 
tensor anisotropy (figure 15), although the latter has received more attention possibly 
because of its 'qualitative' character. 
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streamwise station. (a )  Full tensors; ( b )  only components in the ( y ,  z)-plane. 

6. Reynolds-stress transport 
The transport equation of the large-scale turbulent kinetic energy K = (u iu3/2 is 

./ dissipation 
production 

turbulent diffusion 

where the large-scale dissipation rate is e = v ((au:/ax,)(au:/axj)).  The contributions 
of the subgrid-scale stresses to the production and dissipation are ( z i j ) ( S i j )  and 
(zijSij) .  Since the vortices decay slowly in the streamwise direction, the effect of the 
streamwise gradients of stresses was found to be much weaker than that of the other 
gradients and is neglected in the following discussion. 

The terms retained in the large-scale production of K are 

The dominant production terms are -(u’v’)dU/ay and -(u’w’)aU/az, shown in 
figure 17 together with the total production, which includes both large- and small-scale 
contributions. The first term, -(u’v’)dU/dy, the only non-zero one in a boundary 
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FIGURE 16. Contours of the eddy-viscosity at the second streamwise station. (a) v, from 
least-squares fit to LES results; ( b )  v, = C , K 2 / e .  

layer, dominates the region close to the wall and is almost spanwise-independent. 
The other significant production term, -(u’w’)d U / d z ,  is only active in the immediate 
upwash region. Its location and shape are similar to the tongue of turbulent kinetic 
energy shown in figure 10, and it dominates all the other terms in the budget in this 
region, indicating that it is largely responsible for the generation of these high levels 
of energy. The production contributed by the normal stresses and the corresponding 
mean gradients, - ( d 2 ) d V / d y  - (w”))aW/)az (not shown), is negligible except in a 
small area in the immediate upwash region close to the wall, and its maximum 
value is much lower than those of the two dominant terms. The contribution of 
-(v’w’) ( d V / d z  + )aW/ay) is also negligible. The contribution of the subgrid-scale 
stresses to the energy production, ( z i j ) ( s i j ) ,  is about 10% of the total, and is confined 
to a very thin layer close to the wall ( y  < 0.56’). Similar to the two-dimensional 
boundary layer, the total production is significant in the near-wall region only. 
Since the production is negligible in the vortex core, the velocity gradient due to 
the momentum deficit in the core is not directly responsible for the high levels of 
turbulent kinetic energy shown in figure 10. 

The dissipation of large-scale kinetic energy is shown in figure 18, which also 
includes the contribution of the subgrid-scale stresses. Again, this distribution is 
similar to that of a two-dimensional boundary layer except in the immediate upwash 
region, where the secondary flow convects the wall-layer turbulence away from the 
wall. The dissipation is lower than the production in the region around the vortex. 
The contribution of the subgrid-scale stresses, (zijsij), is about 30% of the total, and 
is confined to a layer of thickness 6‘. 
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FIGURE 18. Contours of the dissipation at the second streamwise station. 

The turbulent diffusion is shown in figure 19. In the upwash region, the turbulent 
transport -a (uiu;u;/2) / a x i ,  shown in figure 19(b), dominates the turbulent diffusion. 
The contours indicate that turbulent transport diffuses energy from the immediate 
upwash region towards the vortex core, increasing the kinetic energy there. However, 
near the vortex centre, the pressure diffusion is dominant, as shown in figure 19(a). 

To visualize more clearly the turbulent transport process, the turbulent transport 
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FIGURE 19. Contours of the turbulent diffusion of turbulent kinetic energy at the second streamwise 
station. A cross denotes the location of the vortex centre. (a) -8 (p'ui) / a x , ,  (b)  -8 (uLu;ui/2) /ax,, 
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velocities of K can be defined, following Shabaka et al. (1985), as 

their vector field is shown in figure 20, superimposed on the distribution of turbulent 
kinetic energy. Outside the vortex core, the vectors generally are aligned with the 
gradients of the turbulent kinetic energy, and diffuse energy away from the vortex 
region. Significant turbulent transport can be observed carrying energy from the 
immediate upwash region towards the surrounding area, especially towards the vortex 
core. In the vortex core region, however, the vectors do not align with the turbulent 
kinetic energy gradient; rather, they only spread energy around the vortex core, in 
agreement with the observations of Pauley & Eaton (1988~). 

In K - c modelling, the turbulent transport term is parameterized by a gradient 
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FIGURE 21. Contours of modelled turbulent diffusion at the second streamwise station. A cross 
denotes the location of the vortex centre. 

transport hypothesis : 

where cK is a dimensionless constant. Based on the results shown in figure 20 the 
gradient-transport hypothesis is not expected to be very accurate inside the vortex. 
To elucidate this point further, the right-hand side of (6.4) has been evaluated using 
the present LES data and is shown in figure 21 (with v, = C,K2/e). Figures 19(c) and 
21 show a similar pattern in the upwash region, but the magnitude of the diffusion 
predicted by (6.4) is much higher than the value shown in figure 19. In the vortex 
core, the model prediction has the wrong sign altogether. 

The transport equations of the large-scale Reynolds stresses Rii are 
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Cijk = (uruiu; + p’ui6jk + p’ui6ik + T>kUi + &u>) (6.9) 

are the production, dissipation, pressure-strain correlation, and third-order diffusion 
correlation, respectively (Speziale 199 1). In the following discussion, only the budgets 
for the primary shear stress -(u’uf) will be shown in detail. Some comments regarding 
the other components will be made at the end of the section. 

The large-scale contribution to the production of -(u’u’), if the streamwise gradients 
are neglected, can be written as 

(6.10) 
av au ,2 au dW av au 
d X k  d X k  dY az d Z  a Z  

Rlk- +&k- 2: (0 )- - (U’U’)- + (u’w’)- + ( 0 ’ ~ ’ ) ~ .  

In addition to (u’2)dU/dy ,  the only non-zero production term in a two-dimensional 
boundary layer, the three spanwise gradients of the mean velocities all contribute to 
the production of the primary shear stress through the corresponding shear stresses. 

The contribution of the terms that are strictly due to the three-dimensionality of the 
flow is shown in figure 22(a). As in the boundary layer, the total production, shown 
in figure 22(c), is dominated by ( d 2 ) d U / d y ,  especially close to the wall; however, this 
production term is drastically distorted in the vortex region by the secondary flow. As 
expected, the three-dimensional terms are only significant in the vortex region, and 
they are smaller than, and usually of opposite sign to (v’*)dU/dy .  Outside the vortex 
core, the distribution of the total production shows a pattern similar to that of -(u’u’) 
(see figure 13), whereas, inside the core it does not. In addition, the magnitude of the 
total production in the vortex core is not small, indicating that the mean gradient 
effects are important for the generation of -(u’u’), although they are negligible in the 
generation of turbulent kinetic energy in the vortex core. 

The pressure-strain correlation Zl12 is shown in figure 23. Outside the vortex core, 
this term is generally of opposite sign to the production, in agreement with the results 
observed in a DNS of a two-dimensional turbulent boundary layer (Spalart 1988). 
Inside the core, on the other hand, it shows a pattern similar to the production but 
with lower magnitude. 

The third-order diffusion correlation is of the form 

(6.11) 

and is shown in figure 24. The pressure term is the dominant one in this case. Outside 
the near-wall region, it is only significant in the vortex core, where it has a slightly 
larger magnitude than that of the pressure-strain correlation. The contribution of 
d (p’u’) l a y  cannot be neglected in this type of three-dimensional turbulent flow. 

Figure 25 shows the transport velocities of -(u’u’), defined as 

(u’u’u’) (u’u’ w ’) vu, = ___ , wu, = ___ (u’v’) (ufu’) ’ 
(6.12) 
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superimposed on the distribution of - ( d o ’ ) .  In the region away from the vortex core, 
the vectors generally are aligned with the gradients of -(u’u’}, but the magnitudes 
are not strongly correlated. In the vortex core, neither direction nor magnitude are 
correlated. Turbulent transport from the immediate upwash region to the vortex 
core is smaller than for the turbulent kinetic energy, shown in figure 20. In general, 
however, the magnitude of this transport velocity is larger than that of the turbulent 
kinetic energy transport velocities shown in figure 20. 

The results of the transport analysis of the two secondary shear stresses are not 
shown here. The pressure-strain correlations of these stresses are also generally 
opposite to their production, and the third-order diffusion correlations are significant 
in the vortex core region. The dissipation rates are negligible. 
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FIGURE 24. Third-order correlation dC12k /axk. 

7. Conclusion 
The interaction between a zero-pressure-gradient turbulent boundary layer and 

a pair of strong embedded common-flow-down streamwise vortices was studied by 
large-eddy simulation. The agreement with experimental data was generally good, 
in spite of differences in the vortex generation and in the Reynolds number. This 
calculation is part of a trend of studies in which LES is applied to more complex 
flows with increased technological impact. This study will be extended to co-rotating 
vortex generators. 

The vortices are generated by body forces. An Oseen vortex generator is proposed, 
along with a wake generator to account for the velocity deficit introduced by the 
actual delta-wing vortex generators used in experiments. The velocity profiles of the 
vortices agree well with those of the Oseen vortex and the experimental data. 

The embedded vortices drastically distort the boundary layer by downwash and 
upwash over great streamwise distance. The velocity profiles deviate significantly 
from the undisturbed profile, close to the vortex. In addition, secondary vorticity with 
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FIGURE 25. Turbulent transport velocity vectors for -(u’u’), superimposed on the contours of 
-(u’u’) at the second streamwise station. 

opposite sign to the embedded vorticity is observed close to the wall and rolled up 
by the secondary flow in the upwash region. The embedded vortices produce a large 
spanwise variation of the skin friction and introduce spanwise skin friction in the 
vortex region. 

The Reynolds stresses are significantly modified and become three-dimensional. 
The secondary flow due to the vortices confines the turbulence to a thin layer in the 
downwash region and suppresses it by straining. Conversely, high levels of turbulent 
kinetic energy and anisotropy of the normal stresses are observed in the upwash 
region. The two secondary Reynolds stresses are also significant there. In the vortex 
core, high levels of turbulent kinetic energy and negative shear stress -(uru’) are 
observed. 

Production and dissipation of kinetic energy are relatively low in the core, while 
the interaction between the pressure and the velocity fluctuations is strong and is 
the primary mechanism responsible for the high energy levels. The pressure-strain 
correlations for the shear stresses are generally opposite to the productions except the 
vortex core region, where the pressure-strain correlation of the primary shear stress 
has the same sign as the production. Turbulent transport from the immediate upwash 
region is an important mechanism for the turbulent kinetic energy, less so for - (u ’d) .  

Modelling the diffusion term by a gradient transport hypothesis leads to significant 
errors in the vortex core. A scalar eddy viscosity cannot be fully accurate in this 
type of three-dimensional flow; the distribution of C,K2/f  is different from any ‘eddy 
viscosity’ constructed from the strain and stress tensors. It gives a large value at the 
vortex centre, resulting in the excessively fast decay of the streamwise vorticity in 
K - E model calculations. The complex behaviour of the pressure-strain correlation 
and similar terms in the vortex region would probably make even Reynolds-stress 
modelling difficult to apply in this type of flow. 
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